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Theoretical Issues in the Calculation of the Electrical
Resistivity of Plasmas1

F. Perrot2,3 and M. W. C. Dharma-wardana4

We recall briefly how the Ziman theory of electrical conductivity, first proposed
for solids and liquid metals, has been extended to the case of plasmas. The
physical assumptions and parameters entering the formula are analyzed. A self-
consistent model of electronic and ionic structure of plasmas is then described
and applied to the calculation of the resistivity. Results obtained for aluminum
are shown and compared to measurements done by Benage, along a thermo-
dynamic path going from normal density at melting to 0.03 compression at
41 eV. The important differences between theory and experiment are discussed.
The uncertainties inherent to the theory are emphasized, and physical effects not
taken into account in the theory are discussed. Finally, the need for accurate
measurements is emphasized.

1. INTRODUCTION

The fast development of new experiments requiring numerical magneto-
hydrodynamic simulations prompts studies of the electrical resistivity of
materials in wide domains of densities and temperatures. Conductivity
measurements in plasma state are extremely scarce so that the theoretical
approach is in many cases the unique tool available in this kind of study.
The first attempt to set up complete theoretical tables of conductivities was
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described by Rinker in 1985 [1]. Comparison of these data with experi-
ments done later, as well as with other theoretical efforts, show the uncer-
tainties inherent in these methods. Although more elaborate theories do
exist, the systematic calculation of the resistivity requires a rather simple
model. The only one that is sufficiently general is based on the Ziman
theory [2], extended to liquid metals and plasmas [3]. In the present
work, we recall this theory and show the difficulties in its application to
plasmas. Results of numerical calculations are shown and compared with a
few experimental points. We then comment on possible improvements of
the theory.

2. ZIMAN THEORY IN PLASMAS

In plasmas, the extension of the Ziman theory of the resistivity [3],
obtained from a variational solution of the linearized Boltzmann equation,
leads to the expression

The cross section depends on the momentum k of the conduction electron
before scattering and the transfer of momentum q in the scattering event.
The electron energy is

where R0 = ha0/e
2 is a reference resistivity (21.74 ftQ-cm) with h the

Planck constant, a0 the Bohr radius, and e the electron charge. In Eq. (1),
ne is the electron density, z is the relaxation time, and TO = 4ne0ha0/e

2 is a
characteristic time. The relaxation time is related to the differential cross
section for elastic scattering E(q,k\.

and the momentum transfer:

with 6 the angle between k and k + q. In Eq. (2), Z(q, k) is relative to a single-
scattering plasma ion. The total scattering for the whole plasma is obtained by
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multiplying by the ionic structure factor S(q), This is a superposition
approximation assuming that the scattering ions act independently and is
justified when the electronic structure is comparable to that of simple met-
als or, equivalently, when the pseudopotential theory for weak electron-ion
interactions is applicable. The bracket in Eq. (2) indicates averaging over
the energy of the conduction electron:

3. CALCULATIONS IN PLASMAS

The quantities entering the Ziman formula are obtained from a first-
principles model dealing with the calculation of both the electronic and the
ionic structures.

3.1. Average Atom Electronic Structure

The electronic structure model belongs to the family of average atom
models (AAM) based on the density functional theory (DFT) proposed by
Hohenberg and Kohn [4] and Kohn and Sham [4] for electronic systems
in their ground state, and extended to thermal equilibrium ensembles by
Mermin [5]. Our application of this theory [6] gives the electron charge
density n(r) around a bare nucleus embedded in an electron gas of den-
sity ne, originally uniform. The electron gas is neutralized by a background
of positive charge (jellium) containing a spherical cavity of radius equal to
the atomic radius ra, with the nucleus of charge Z at its center. The ionic
density is

and the density of the uniform electron gas is related to Z* mentioned
above by

where a free electron density of states is assumed, and f(s) is the Fermi-
Dirac distribution appropriate to the density-temperature conditions. The
last important quantity present in Eq, (2) is the effective number of free
electrons per plasma ion Z*. This quantity is well defined for simple metals
but can lead to serious difficulties in transition metals or in dense plasmas.
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nb(r) is the bound charge density, a sum over all the bound states b, with
degeneracy gb and wavefunction (pb(r\ existing in the self-consistent poten-
tial. Equation (8c) gives the contribution of the continuous spectrum as an
integral over all the free electron energies [see Eq. (3)] and a sum over
angular momenta. The free wave functions are normalized to Bessel func-
tions ji(kr) at infinity. The occupation numbers fb and fk are given by
Fermi-Dirac statistics. The electron density n(r) is characteristic of an
AAM in the sense that the electron states are populated with a noninteger
number of electrons. It can be interpreted as a thermal average of all the
actual configurations with integer populations that exist in the plasma.
A multiple-ion model going beyond the AAM is discussed in Section 5. The
total number of bound electrons is easily deduced from Eq. (8b), so that
the number of free electrons is

b

depending on density and temperature. Such a definition can lead to dif-
ficulties in the case of strong pressure ionization [10], but we do not dis-
cuss this point here.

3.2. Pseudopotential and Ionic Structure

The next step in the resistivity calculation is the definition of the ion-
ion interaction that determines the ionic structure. The assumption of a
pair interaction is made. This is certainly a good approximation in simple
metals (by definition) and in plasmas when those conduction electron
states which play a role in metallic binding are of s and p symmetry and
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The nucleus induces a pile up of screening electronic charge. The quantum
mechanical self-consistent solution relies on the techniques proposed by
Friedel for solving the impurity problem [7,8] in which the phase shifts of
continuum wave functions play an important role. Details on these techni-
ques and their extension to finite temperatures can be found elsewhere
[9, 10]. The relaxed electron charge density is written:
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feel a rather weak ion core potential. In more complex cases, when the elec-
tron-ion interaction is strong due to the lack of core states orthogonaliza-
tion (for instance in hydrogen), or when high angular momenta are
involved (transition metals, rare earths, actinides, etc.), the pair-interaction
assumption breaks down. Let us note also that, in most plasmas of simple
metals, there exist domains of temperature and density where the electronic
structure becomes complex: this happens when localization of a bound
state occurs because the density decreases or the temperature increases.
Such situations will be found for aluminum in Section 4. We define the
pseudopotential, when justified, as

where An f(q) is the Fourier transform of the AAM density of the con-
tinuum states given in Eq. (8b) and II(q) is the interacting density-
response function of a uniform electron gas at density ne and temperature T,
Some attention must be paid in substracting the oscillations of the charge
density inside the ionic core. The temperature and density dependent w of
Eq. (10) behaves, in coordinate space, like —Z*/r at large distances. Using
standard pseudopotential theory, the pair interaction takes the form

Once the pair interaction is defined, the ionic structure of the plasma
can be determined. The pair distribution function g(r) is a solution of one
of the integral equations well known in the theory of classical fluids. We
use the hypernetted-chain (HNC) theory or its improvement, the modified
HNC (MHNC) theory [11], which is better when ion coupling is strong.
The Fourier transform of g(r) — 1 gives S(q) in Eq. (2).

3.3. Elastic Scattering Cross Section

The Ziman formula has been widely applied to calculations in simple
liquid metals [12] with some success. In plasmas, it has been used in con-
junction with more or less sophisticated models of electronic and ionic
structure [1, 13-16]. An important issue in these calculations is the deter-
mination of the cross section. £(q,k) can be calculated either with the
(local) pseudopotential formulation (independent of A:),



where S'(q) is the dielectric function, or, alternatively, from the scattering
amplitudes,

in terms of the wave-function phase shifts 6 t ( k ) . When the electron-ion
interaction is really weak, the two formulations give the same result. But
for di- or trivalent simple metals, the difference can be significant. In the
case of a strong interaction, the second formulation, Eq. (13), should be
better since it does not require linear response to the potential. It is puzzling
to see that this is not the case, for example, in aluminum. In Table I, we
compare the values of the resistivity at constant electron density ne = 0.027
atomic unit (i.e, the electron density in normal solid aluminum), obtained
from the two cross-section formulas. The phase-shift cross section gives a
much larger value of the resistivity. The pseudopotential cross section is in
much closer agreement with experiment at low temperatures: the resistivity
measured in liquid aluminum at melting is R = 24.4 juQ • cm. The strong
disagreement between the two calculations may be due to the following
reasons, (i) When the two cross sections differ strongly, then the exact den-
sity of states also differs strongly from the free electron density of states.
The exact one, calculated from the phase shifts should be used as a weight
factor in the averaging of Eqs. (2) and (5) . It should also be noted that if
the pseudopotential is defined via Eq. (10), then the correct density of
states is, in a sense, automatically folded into w(q), thus improving the
quality of the pseudopotential calculation, ( i i ) The single (i.e., isolated)
scatterer assumption contained in the convolution with S(q) may not be

Table I. Comparison of the Resistivities Calculated in Aluminum, at Constant Electron
Density and Increasing Temperature, with Two Possible Formulations of the Cross Section:

The Number of Free Electrons Is Also Shown

7(eV)

2.5
5

10
20
30
40
60
80

100

Z*

3.000
3.000
3.023
3.600
4.348
5.193
6.306
7.233
8.272

R ^ i f i Q - c m )

26.6
38.3
71.5

121
141
136
122
109
96.2

R,e (ftQ-cm)

115
122
150
182
182
167
149
128
111
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valid. If the atomic-ordering length scale in the plasma becomes of the
order of some of the /r-dependent electron mean free paths, or if multicenter
resonances exist in the spectrum, the multiple scattering effects beyond the
convolution model become relevant. Their full treatment, impossible in the
framework of simple models, would be the key to the problem in these
cases.

4. COMPARISON WITH EXPERIMENT

4.1. Measurements in Liquid Metals

Many experimental results on the resistivity of metals at melting are
available [12]. But few experiments give the resistivity as a function of
temperature. Let us note, for example, the measurements of Al, Ge, and
Al-Ge alloys at normal pressure [17]. Experiments under pressure are also
reported by the CEA team: for tantalum and tungsten [18] and more
recently, for beryllium [19], uranium [20], cerium [21], rhenium [22],
and thorium [23] using the isobaric expansion technique.

4.2. Plasmas

In dense plasmas, one of the earliest resistivity measurements using the
exploded wire technique was due to Shepherd et al. [24], for polyurethane,
at a temperature of 10 eV and an electron density of about 6x l0 2 2

e - c m - 3 . Unfortunately, these measurements were not very accurate. More
recently, the same technique was used by DeSilva and Kunze [25] in cop-
per plasmas, between 1 and 3 eV, and in the range of 0.5 to 2 g • cm - 3 . New
experiments on polyurethane are reported by Benage [26], at higher tem-
peratures (25 to 30 eV) and for a density of 1.265 x 1 0 - 2 g - c m - 3 .

The measurement of resistivity along a thermodynamic path going
from the melting point under normal conditions to a state corresponding
to a compression of 0.03 at T = 4\ eV in Al has been performed at Los
Alamos by Benage [27], using the exploding wire method. The density,
temperature, and resistivity are given for 14 points along the path. In Fig. 1,
we show the temperature as a function of density, as estimated by Benage
in a numerical simulation using the Sesame equation of state [28]. The
ionization Z* calculated with the theoretical model of Section 3 is also
plotted. The curve presented is continuous, although there exist densities
where the calculation is meaningless because a bound state is crossing the
onset of localization. The highest existing bound states are indicated on the
curve. In Fig. 2, we compare experimental values with the theoretical
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Fig. 1. Temperature (dashed curve) along the thermodynamic path
of the experiment in aluminum done at Los Alamos by Benage [27],
and the average number of free electrons Z*, calculated with the
AAM (solid curve). The highest bound state existing in the AAM, at
a given temperature-density point, is indicated along the curve.

resistivities obtained with the phase shifts and the free-electron density of
states averaging, and with the pseudopotential.

The discrepancy between theoretical estimates themselves, and between
theory and experiment is very important. Unfortunately, the experimental
error bars are not available. In addition, one must keep in mind that the
temperature is not measured, but results from a simulation. Also, the
diameter of the plasma column in the exploding wire may vary along the
wire and during the measurement. For the theoretical calculations, we can
make the following comments, (i) The structure factor S(q) is important at
low temperature only (T< 10 eV). Thus, if it is assumed that Eqs. (1) and
(2) are correct, the uncertainties on this quantity play a minor role, (ii) The
cross section is crucial. The pseudopotential formulation gives good results
at normal density, but deviates from experiment for compressions lower
than 0.2. On the other hand, the phase shift formulation overestimates the
resistivity at normal density, but gives values that are of the right order of



Electrical Resistivity of Plasmas 1307

magnitude at low compression and high temperature, even if the accuracy
is poor. The Spitzer formula [29], frequently used in classical plasmas,
gives R = 245 /uQ • cm for a compression of 0.1. In Fig. 2 we have also plotted
the results of the simple theory proposed by Lee and More [30].

5. POSSIBLE IMPROVEMENTS IN THE THEORY

5.1. Beyond the Average Atom Model

The question of the adequacy of the AAM for the resistivity calcula-
tion must be considered. Z* is the appropriate parameter relating the elec-
tron and ion densities in Eqs. (6) and (7). But the cross section is not
obviously related to Z*. Let us think of the plasma as an assembly of ions
of various charge Zf. In the pseudopotential formulation, we have

Fig. 2. Electrical resistivity in the aluminum plasma of the
Benage experiment. ^exp is the measured value. R1 and R2 are
calculated using the phase-shift and pseudopotential formula-
tions of the scattering cross section, respectively. RLM is the
corresponding calculation using the Lee and More model [30].
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where wt(q) is the pseudopotential of ionic species / with ionic charge Zf
and concentration xt. The partial structure factors are Stj(q) obtained by
solving coupled integral HNC equations, with pair interactions built using
the pseudopotentials. Table II shows a comparison, in aluminum, between
calculations done in this multiple ion model (MIM) [31 ] and in the A AM
of Section 3. The MIM resistivities are larger, except when the conditions
are such that there is only one ionic species in the plasma (T= lOeV for
compressions of 0.4 and 0.5). If we take the trends of Table II into account,
the curve R2 in Fig. 2 must be shifted up, in better agreement almost
everywhere with experiment. This clearly calls for more detailed MIM
calculations in order to interpret this experiment. Unfortunately, these
calculations become more and more difficult when the number of relevant
configurations increases at high temperatures.

5.2. Effect of Inelastic Contributions to Scattering

When the bound spectrum of an atom contains levels which are rather
close in energy, the scattering of an incident electron may be accompanied
by the transition of a core electron from one of these bound states to
another. The scattering becomes inelastic. Such a process has already been
suggested in different circumstances [32]. It can change the resistivity.
In the analysis starting with the Boltzmann equation, the rate of change
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Table II. Comparison of the Resistivities in Aluminum, as Calculated Using the Multiple-
Ion Model ( M I M ) or the Average Atom Model ( A A M ) , with the Pseudopotential Formula-

tion of the Cross Section

r ( e V )

5
5
5
5
5

10
10
10
10

Compression

0.1
0.2
0.3
0.4
0.5
0.2
0.3
0.4
0.5

M I M

810
720
490
312
203
382
296
220
164

R p s ( f t Q - c m )

AAM

405
590
318
240
165
288
240
220
164
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in the momentum distribution of the conduction electron due to the electric
field can be estimated with the help of the Fermi Golden Rule. The inelastic
scattering of the incident electron e by a core electron c is associated with
the Coulomb interaction AH = e2/ice, so that the relevant matrix element is

where k and k' are the momenta of the incident electron before and after
scattering. The wave functions for the conduction states have been assumed
to be plane waves, normalized in the volume Q of the plasma. The bound
states occupied by the core electron c before and after the collision are /
and j, and q = k' — k is the momentum transfer. The energy conservation
can be expressed as

Using this matrix element in the Golden Rule for the rate of transition, we
obtain, after some algebra,

where 0 is the angle between k and k'. For each pair / andy, k and k' are
related by Eq. (17). nt is the ionic density; and/j and/) are the equilibrium
populations of the core states. The total relaxation time r(k) couples with
the elastic relaxation time Te,(k) and with the total relaxation time for k'.
The structure of Eq. (18a) is complex and, up to now, we have no formal
solution of it. It can be simplified if the inelastic contribution is not too
large. Numerical calculations along these lines are in progress. Significant
changes in the calculated resistivity can be expected.



6. CONCLUSION

We have shown that the systematic calculation of the resistivity in
plasmas, even in the framework of a simple theory, is a difficult task.
It would be much more complicated in plasmas of heavy elements, where
both the electronic and the ionic structure are not well understood. The
problem of how to treat the multiple scattering of an electron by the
plasma ions is certainly at the heart of the problem. Furthermore, the ques-
tion of the adequacy of the simple average atom model is not clearly
answered. The change of the energy scale of the relevant processes when
the temperature rises might require accounting for inelastic scattering
effects. Anyway, measurements of the resistivity of plasmas in wide
domains of temperatures and densities are needed. Provided the plasma
parameters and the resistivity are measured with a known accuracy, they
will provide tests of the physical assumptions in the theoretical models.
Experiments using isobaric vessel techniques seem promising. Another type
of experimental method, measuring the plasma reflectivity, has been
described in the literature [33]. It could, in principle, explore wider
domains of temperatures but, up to now, leads to difficult interpretations
[34]. Nevertheless, there is no doubt that the study of transport properties
of plasmas will develop very fast in the near-future.
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